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INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS: 
DISTRIBUTION OF TRIPLES 

JURGEN EICHENAUER-HERRMANN AND HARALD NIEDERREITER 

ABSTRACT. This paper deals with the inversive congruential method with 
power of two modulus m for generating uniform pseudorandom numbers. Sta- 
tistical independence properties of the generated sequences are studied based 
on the distribution of triples of successive pseudorandom numbers. It is shown 
that, on the average over the parameters in the inversive congruential method, 
the discrepancy of the corresponding point sets in the unit cube is of an order 
of magnitude between m-1/2 and m-1/2(logm)3. The method of proof relies 
on a detailed discussion of the properties of certain exponential sums. 

1. INTRODUCTION 

Nonlinear congruential methods of generating uniform pseudorandom numbers 
in the interval [0,1) have been studied intensively during the last years. Reviews 
of the development of this area can be found in the survey articles [2, 3, 11, 15, 17] 
and in the monograph [16]. A very promising nonlinear congruential approach 
is the (recursive) inversive congruential method. The present paper concentrates 
on the particularly important case of a power of two modulus, which received 
considerable attention [1, 4, 5, 7, 8, 9, 14]. Let m = 2 with some integer w > 5. 
Let Zn = {0, 1 ... , n- 1} for integers n > 1, and write En for the set of all odd 
integers in 7n. For Yo e Em and parameters a, c e Zm with a 1 (mod 4) and 
c 2 (mod4), an inversive congruential sequence (Yn)n>O of elements of Em is 
defined by 

Yn+1 a(y- 1 + c) (mod m), n > 0, 

where z-1 denotes the multiplicative inverse of z in the group *m. A sequence 
(xn)n>o of inversive congruential pseudorandom numbers in the interval [0,1) is 
obtained by xn = yn/m for n > 0. It follows from [1], [16, Theorem 8.9] that 
the sequences (Xn)n>o and (Yn)n>O are purely periodic with the maximum possible 
period length m/2. The low-order bits of the pseudorandom numbers generated by 
this method have a short period length. The referee has pointed out that this fact 
may be viewed as a deficiency of this method. Statistical independence properties of 
the generated sequences, which are very important for their usability in a stochastic 
simulation, can be analysed based on the discrepancy of s-tuples of successive 
pseudorandom numbers with s > 2. For N arbitrary points to, t1,. - ItN-1 E 
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[0, 1)S the discrepancy is defined by 

DN(to,t1, , tN-1) =sup IFN(J)-V (J)I 
J 

where the supremum is extended over all subintervals J of [0, 1)S, FN(J) is N-1 
times the number of points among to, t1, .. ., tN-1 falling into J, and V(J) denotes 
the s-dimensional volume of J. Observe that the discrepancy of N true random 
points in [0, 1)S is almost always of an order of magnitude N-1/2(loglogN)1/2 
according to the law of the iterated logarithm for discrepancies [10]. Subsequently, 
the abbreviations 

Xn = (Xnt iXn+1 ,Xn+s-1) e [0, 1)', n > 0, 

and 
D(S) 2;ac Dm/2 (XO, X1, X X(m/2) ) 1) 

are used. In [5, 7, 14] upper and lower bounds for the discrepancy D(2)c of m/2;a,c 
pairs are established, which are basically in accordance with the law of the iterated 
logarithm for the discrepancy of true random points in [0,1)2. In the present 
paper, the discrepancy D(32;ac of triples is studied. In the fourth section, the 
main results are established and discussed. Their proof relies on the analysis of 
certain exponential sums, which is carried out in the third section. The reader is 
referred to [12] for an introduction to the theory of exponential sums. The second 
section contains some basic auxiliary results. 

2. AUXILIARY RESULTS 

First, some further notation is necessary. For integers k > 1 and q > 2, let Ck (q) 

be the set of all nonzero lattice points (hi,... , hk) e Zk with -q/2 < hj < q/2 for 
1 < j<k. Define 

r(h, q) = fqsin(7rlhl/q) for h E Ci(q), 
I for h = 0, 

and 
k 

r(h, q) = J r(hi, q) 
j=1 

for h = (hi, ... , hk) E Ck(q). For real t, the abbreviation e(t) = e27it is used, and 
u v stands for the standard inner product of u, v E ik. Subsequently, two known 
general results for estimating discrepancies are stated which follow from [5, Lemma 
1] and [16, Corollary 3.17], respectively. 

Lemma 1. Let N > 1 and q > 2 be integers. Let d be a divisor of q with 1 < d < q. 
Let c Ed Zand yn E Zk with y- c (mod d) for 0 < n < N. Then the discrepancy 
of the points to, t 1, ... I tN-1 with tn = yn/q E [0, I)k satisfies 

kd 1I N-i 
DN (tOi tlx i . tN-1) <q +N r (h, qd) | e(h t,)| 

Remark. The bound in Lemma 1 can also be derived from [16, Theorem 3.10] 
by noting that the proof of this result remains valid for the discrepancy 
DN(to, tl , ... , tN-1) extended over all intervals modulo 1 in [0, I)k and that both 
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DN (to, t1, t * tiN-) and the absolute values of the exponential sums in the bound 
in Lemma 1 are invariant under shifts modulo 1 of the point set by a constant 
vector. 

Lemma 2. The discrepancy of N arbitrary points to, ti, ,NtN e [0, 1)k satis- 
fies 

N-1 

DN (to v t. , X ' t N - 1) > 2N ((7r + 1) -1) Hj=l max(l, Ihj) S n=O l 

for any nonzero lattice point h = (h1,... , hk) e k', where e denotes the number of 
nonzero coordinates of h. 

The first part of the result below follows from [13, Lemma 2.3]; its other parts 
can be deduced from [5, Lemma 2(a)] by some short calculations. 

Lemma 3. Let a > 3 and d 1 (mod 2) be integers. Then 

E r(h2?) < - log 2' + 
2 

hEC,(2-) 

E I(h,2() <- log2 + 4 

hEC, (2a) X 
h-1 (mod 2) 

S 

I 
- < 

I 
log 2' + 2, 

hEC1 (2a) 
rh 0) 2r1 

h=d (mod 4) 

and 

E I-h2") < 
I 

log2' + 
I 

hEC-C (2 ) X~,21 
7 

h=d (mod 8) 

The following technical result is used in the proof of Lemma 7. A proof is added 
for the sake of completeness. 

Lemma 4. Let u, v, w, a, c be integers with u _ w _1 (mod 2), v- 0 (mod 4), 
u-v + w 0 (mod 8), a--1 (mod 4), and c-2 (mod 4). Let 

P(x) = u(x + C)2 - vax2(x + C)2 + wx2 

for x e 2. Then, for any integer /3 > 1, there exists exactly one integer x e Z* 
with P(x) 0 (mod 20+2). 

Proof. The lemma is proved by induction on 3. The desired result is obvious for 
/3 = 1. Now, suppose that for some integer 3 > 1 there exists exactly one integer 
xo E2Z,, with P(xo) 0_ (mod 213+2). Then a short calculation shows that 

P(xo + 23) u(xo + c + 213)2 - va(xo + 213)2(Xo + c + 213)2 + w(xo + 213)2 

P(xo) + 23+1 (u(xo + c) + wxo) + 223(u + w) 

P(xo) + 213+2 (mod 213+3), 

which implies that there exists exactly one integer x e 2Z*+,, namely xo or xo + 2:, 

with P(x) 0_ (mod 23+3) . F 
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Lemmas 1 and 2 indicate that a crucial role for the analysis of the discrepancy 
D(3)2c of triples is played by the exponential sums Z7,i2)j-1 e(h x,) for h e Z3. 

These sums are studied in Lemma 5, which leads to the definition of the exponential 
sums in the third section. 

Lemma 5. Let h = (hi, h2, h3) e 23. Then 

(m/2) -1 

S e(h x,) = e((hiz-l+h2az+h3(z+c)-1)/m) 
n=O ZEZ*m 

where a, c E Em are the parameters in the inversive congruential method. 

Proof. It follows from Xn = (Yn, Yn+1, Yn+2)/m, Yn+ E a(y 1 + c) (mod m), and 

Yn+2 (y-j1 + c)-1 + ac (mod m) for n > 0 that 

(m/2)-1 (m/2)-1 

S e(h xn) = 5 e((hiyn +h2ayn1 +h3(yn 1+c)-l)/m) 
n=O n=O 

Since {yo, Y X... * Y(m/2)-1 } = 7/I, one obtains 

(m/2) -1 

5 e(h xn) = 5 e((hly+h2ay-1+h3(y-1+c)-1)/m) 
n=O YEZm 

Hence, the transformation z -y-1 (mod m) yields the desired result. E 

3. EXPONENTIAL SUMS 

For integers u, v, w, and a > 1 an exponential sum is defined by 

S(u, v, w; a; 2a) = 5, e((uz-1 + vaz + w(z + c)-1)/2a), 

Z22 

where a, c E Z with a -1 (mod 4) and c -2 (mod 4). Some relevant properties of 
these sums are collected in the following three lemmas. First, a short calculation 
yields 

{2 for u +v +w 0- (mod 2), 
S(u, v, w; a; 4)1 = 2fru+v+w=0(mod2), 

0O for u+ v + w * (mod 2), 

and 

S(u, v, w; a; 8)1 f oru+v+w 0(mod4), 
{O for u+v+w 0 (mod4). 

Lemma 6. Let u, v, w, a be integers. 
(a) If u _ v _ w- 0 (mod 2) and a > 2, then 

S(u, v, w; a; 2a) = 2 S(u/2, v/2, w/2; a; 2a-1). 
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(b) If u-v + w 0 0 (mod 4) and a > 4, then 

S(u, v, w; a; 2') = 0. 

(c) If v _EO (mod2), u-v + w 0 0 (mod8), and a > 5, then 

S(u,v,w;a;2a) = 0. 

Proof. (a) It follows at once from u v -w 0 O (mod 2) that 

S(u,v,w;a;2a) = 2 E e ((uz-l +vaz+w(z+c)-1)/2a) 

= 2 S(u/2, v/2, w/2; a; 2a1). 

(b) A short calculation shows that 

S(u, v, w; a; 2') 

- S S e((u(z + 2a-2()-1 + va(z + 2a-2() + w(z + c + 2 2() )/2a) 

Z2c;-2 (EZ4 

E E S (((z-1 - 2' -2() + v(az + 2a-2() + W((z + c)1 -2 2())/2 ) 
zZE-2 (EZ4 

- S e((uz-1 +vaz+w(z+c)-1)/2a) 5 e(-(u-v+w)C/4) =0. 
ZEZ;.-2 (EZ4 

(c) If u-v + w 0 0 (mod 4), then S(u, v, w; a; 2a) = 0 follows from part (b). Hence, 
u -v + w -4 (mod 8) can be assumed, which implies that u + w - 0 (mod 2). Then 
a short calculation yields 

S(u, v, w; a; 2') 

- : S e ((u(z + 2a-3()-1 + va(z + 2a-3() + w(z + c + 2 3() )/2) 
zZ~-3 (GZ8 

5E E e((u(z-1 -2a-3( + 22o,-6(2) + v(az + 2a-3() 
ZG22c-3 (GZ8 

+ w((z + c)-1 -2-3( + 22a-6(2))/2c) 

- S e((uz-l + vaz + w(z + c)-1)/2a) 5 e(-(u-v + w)(/8) = 0, 

which completes the proof. 

Lemma 7.' Let u,v,w,Ix be integers with u -w _1 (mod 2), v- 0 (mod4), 
u-v + w _ O (mod 8), and r > 5. Then 

IS(u, v, w; a; 2a) - 2(a?2)/2 
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Proof. Let 3 = [(ca - 3)/2] and observe that 4/3 > a for 3 > 2. Hence, straightfor- 
ward calculations show that 

S(u, v, w; a; 2') 

= : S e((u(x + 20y)1 + va(x + 23y) + w(x + c + 23y)-1)/2a) 
XEZ;' YEZ2ct-, 

- : S e((u(x1 - 23x-2y + 223xy2 - 230y3 + 240y4 - 250 y5) 
XEZ;,o YEZ2-- 

+ va(x + 2'3y) + w((x + c)- - 2'3(x +C)-2y 

+ 220(X + c)y2 - 233y3 - 240 y4 - 250 y5))/2a) 

S e ((ux- ' +vax+w(x+c)-1)/2a) S e (((UX-2 -va+w(x+c) -2)y 
27 CE 2 YEZ2C - O 

+ 23(ux + w(x + c))y2 - 220(U + w)y3 + 230+1y4)/2a`) 

S e((ux-1 +vax+w(x+c)1)/2a)S(x), 

where the abbreviation 

S(x) = E e(((uX2-va+w(x+C)-2+223(U+W)+2 3+1)y 

YEZ2aL31 

+ 23(ux + w(x + c))y2)/2a"-) 

has been used. Since gcd(23(ux + w(x + c)), 2c-1) = 23+1 and 3 + 1 < a - - 2, 
it follows from [6, Lemma 6] that 

W2(a+2)/2 for UX-2 - va + w(x + c)-2 _ 0 (mod 23+2), 

Sx i 0 for ux - 2va + w(x + c)-2 0 0 (mod 23+2), 

|2(o,+2)/2 for P(x)--O (mod 213+2), 

0 O for P(x) 0 (mod 23+2), 

where P(x) = u(x+c)2 - vax2 (x + c)2 + wx2 for x E Z. Now, Lemma 4 implies that 
there exists exactly one integer x E 2, with P(x) 0 (mod 23+2), which yields 
the desired result. O 

Lemma 8. Let u, v, w, a be integers with a > 5. 
(a) If v- 1 (mod 2) and u - v +w _ 0 (mod4), then 

5 IS(u, v, w; a; 2'a)12 = 22a-1. 
aZ2ad 

a=-l (mod 4) 
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(b) If v _ 2 (mod4) and u - v + w-O (mod8), then 

E IS(u, v, w; a; 2'a)12 = 22,. 
aC-Z2a' 

a-1 (mod 4) 

Proof. Let gcd(v, 4) = 2' with v E {O, 1}. Straightforward calculations show that 

E IS(u,v,w;a;2')12 
aC7Z2a 

a-1 (mod 4) 

E E e((u(z-1 
- 

y-1) + va(z-y) 
aCZ2a- Y, EZ*Za 

a-1 (mod 4) + w((z + c)1 - (y + c)1))/2a) 

= S S e((uy-l1z-(y-z)-va(y-z) 
YZ2*, aCZ2cx 

a= _1 (mod 4) 

+ w(y + c)-1(z + c)-<(y -z))2 

,e ((uy-l z-' (y-z) -v(y -z) + w(y + c)-l (z + c) '(y -z))/2 ) 
Y,ZEZ*a 

Y.Zz2 ~ ~ ~ ~ ~~ - 

S E e(v(z-y)d/22) 
dE 2ct - 2 

= 2a-2 e ((uylz1(y-z)-v(y-z) 

Y,zc7z*2C 
y~z (mod 2a-t'2) )/) 

+ w(y + c)->(z + c)-1(y -z))/2) 

= 2a-2 E e((uyz - v + wyz)(y - z)/2a) 

y z (mod 2acv2) 

= 2a-2 5 e((u-v + w)(y-z)/2a) = 22a+v-1 

y-z (mod 2a-u-2) 

which yields the desired result. O 

4. DISCREPANCY OF TRIPLES 

In this final section, the discrepancy D(3) c of the triples 
m/2;a,c 

Xn = (xnxfln+1,xn+2) E [O 1i), 0 < n < m/2, 

of successive inversive congruential pseudorandom numbers is studied. The main 
result of the present paper is Theorem 1, which provides an upper bound for the 
average value of the discrepancy of triples over the parameter a. Theorem 2 is an 
immediate consequence of this result. A proof is added for the sake of completeness. 
Finally, a lower bound for the discrepancy of triples is stated in Theorem 3. 
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Theorem 1. The average value of the discrepancy D (3)ac of triples in the inver- 
sive congruential method over a E Zm with a -1 (mod 4) satisfies 

4 3) 4(12 +17V2?) _ _73m m E D m/2;ac < ( 1/2 (1 logm + + )3 

a-1 (mod 4) 

for any parameter c _ 2 (mod 4). 

Proof. First, Lemma 1 is applied with k = 3, N = m/2, q = m, d = 2, c = (1, 1,1), 
and tn = x, for 0 < n < m/2. This yields 

D~3~ <6+2 1 (m/2) -1ehx) 
Dm/2;a,c <- m rn r: h: m/2) S 

m m hEhC3 (m/2) (h, m/ 2) n=O 

m 
2 

E I(h /2)IS(h1, h2, h3; a; m) 
h=(h1 ,h2 ,h3 ) EC3 (m/2) 

6 2 w-2 

rn+ S rhm2)IS(hi, h2, h3; a;m) I M o h=(hi,h2,h3)C03(m/2) r(h, m/2) 

gcd(h1,h2,h3,m)=2V 

=6+2 2v 1 
9,9,9;a wL 

mm iV=O g=(g9,,93)C3 (2W-v-l) r(2vg, m/2) S(gi g2 g3; a; 2wiI)1, 

gcd(g1i 92,93 ,2)=1 

where the second step follows from Lemma 5 and in the last step Lemma 6(a) was 
applied. Straightforward calculations show that 

2 2 w2 1 - I S (9g g92,93;a;4)1 m I g=grgaE 2 r(2w0 2g, m/2) 
9=(91 ,92 ,93 )C-C3 (2) 

gcd(g1 92,93,2)=1 

1 _ 3 12 
- 

19C 2r(2w- 
2g,m/2) (r(m/4,m/2))2 i2' 

g=(gi ,g2,g3)E03 (2) 
91 +92 +93 =0 (mod 2) 

2 3 
m r(2-3g, m/2) IS(91,92, 93; a; 8)1 

g=(91 ,92 ,93)EC3 (4) 
gcd(gj ,92,g3,2)=1 

_ v ~~~~~~~~1 
g=(91,92,93)EC3(4) r(2g, m/2) 

gcd(g1 ,92,93,2)=1 
91 +92+93-O (mod 4) 

( _ _ __ _ rm/4,m/2)) ( 48 96 
- 6 i +r(m/4, m/2)) (r(m/8, m/2) )2 - 2~ 
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and 
2 

2 w--4IS(g1 92, 93; a; 16)1 m r(2w-4g, m/2) 
g=(gi,g2 ,g3)EC3 (8) 

gcd(gj ,92,93,2)=1 

g=(91 ,92 ,93)EC3 (8) (2g m/2) 
gcd(gj ,92,93,2)=1 

91 -92+93=0 (mod 4) 

=6 (1 + r(m m 
/2) 

+ 
r(m/4, m/2)) (r(m/16,m/2) 

+ 
r(3m/16,m/2)) 

96(2 + v2) 192(6 + 5v/-) + 
m 2 m3 

which implies that 

D (3) < 6 +12(21 + 8v/) + 96(13 + 10v'r) 
m/2;a,c m2 m3 

2 -5 1 
+ - 

E 2v Z (91, 92 93; a; 2w 
IJ=0 g-(91 ,92,93)EC3(2'--1 )(vm2 

92 =0 (mod 4) 
gcd(gj ,93,2)=1 

2-5 1 

+ E 2_ r(2g, m22) IS(91,92,93;a;2WW)I 
W=O 

g=(g1,g2,93)EC3(2W' 
) g m2 

92=2 (mod 4) 
gcd(gj ,93,2)=1 

2-5 

+my - 2" r(2vg m/2S S(91, 92 93; a; 2S 
WO0 g(g1,g2,g3)EC3(2'~)(,m2 

92 = 1 (mod 2) 

Now, it follows from Lemma 6(b,c) that 

D (3) < 6 +12(21 + 8v) + 96(13 + 1Ov/) 
m/2;a,c- m2 m3 

2 1 
+~ 2W 5S(g1,92,93;a;wI ) 

W=0 g=(g g ,g3)EC3 (2'-L_ (g, m/2) 
91=93_1 (mod 2) 

92=-O (mod 4) 
91 -92+93=0 (mod 8) 

2-5 1 

+ - 
2_ r(2g, m/2 2IS(91, 92,93; a; 2wW)I 

0=O g=(91,92,93)EC3 (2 ) ( 

91g-93-1 (mod 2) 
92=-2 (mod 4) 

91 -92+93 =0 (mod 8) 

2W-5 1 

+ 2-E 2v^ E _ r(2vg, m/2) IS(91, 92,93; a; 2-')- 
IJ=0 =(91 ,92,93)EC3(2' 

92-1 (mod 2) 
g1 -92+93=0 (mod 4) 



1638 JURGEN EICHENAUER-HERRMANN AND HARALD NIEDERREITER 

Hence, Lemma 7 can be used in order to obtain 

D (3) < 6 + 12(21 + 8y'r) 96(13 + 1Ov/) 
m/2;a,c - m 2 3 

4 -5 

+ S 22/2 5 +M1/2 E E _ r(2zg m/2) 
IJ=O 

9=(91,92,93)EC3 (2@ 

91--93-1 (mod 2) 
92-=O (mod 4) 

91 -92+93=O (mod 8) 

2 
-5 

m 
- 

E 21 
_ (1~ )S(91X 92 93; a; 2w-')1 

t'=0 g=(91,92,93)EC3(2w-l) r(2vgm/2)S 
91-=93 1 (mod 2) 

92=-2 (mod 4) 
91 -92+93-O (mod 8) 

2 1-5 

t'0 g=(ggg )C3(2w.l) r(2wg m/2) IS(91 i 92, 93; a; 2wt/)I. 
92-1 (mod 2) 

91 -92+93-O (mod 4) 

Therefore the average value of the discrepancy D(3) c over all a C ZEm with 
m/2;a,c 

a 1 (mod 4) satisfies 

4 z (3) < 6+ 12(21 + 8V) +96(13+ 10v/) 
m m/2;a,c m + 2 m3 

aE7Zm 
a-1 (mod 4) 

+4 rf 2 _g, m/2) 
=u0 g=(91 ,92,93)EC3(2w 

- 
gm) 

91-=93-1 (mod 2) 
92-=O (mod 4) 

91 -92+93=O (mod 8) 

2 -5 

+m '-s2_ 2 
1V=O g= (91,92 ,93 ) EC3 (2wv' )(vm2 

91g=93 1 (mod 2) 
92-=2 (mod 4) 

91 -92+93=0 (mod 8) 

(2w v 2 E 1s~S(9 1,92, 93; a; 2wJvl (2w-v-2 
aEZ2.- 

a-1 (mod 4) 

2 -5 
+- 2 ' 

J=W0 g=(91,92,93)EC3(2W-l) 
(g, m/2) 

92=1 (mod 2) 
91 -92+93=0 (mod 4) 

* (2wi~2 aEu IS(91, 92, 93; a; 2ww)I) 
aEZ2 - V 

a=_ 1 (mod 4)/ 
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6 + 12(21 + 8v) + 96(13 + 10x/) 
m + 

4w-5 

+m1/2 : g g EC -2 r(2wg, m/2) 

91-93=1 (mod2) 
92=O (mod 4) 

91 -92+93=0 (mod 8) 

2 w-5 

IJ=O g=(91 ,92,93) )C3 (2' - >1)(g 

91-=93-1 (mod 2) 
92-=2 (mod 4) 

91-92+93=O (mod 8) 

I2_-v2 S S(91, 92, 
93; a; 2w-v)12 

aEZ2W- V 

\a-=1 (mod 4) 

2 1 

+ 2v r(2'g, m/2) 
v=O g=(91,92,93)EC3(2w-v-1) 

92=1 (mod 2) 
91-92+93=0 (mod 4) 

* | 2W-^ 2 E 1S(91, 92, 93; a; 2w -v)12, 
[2w-v-2 I: 

o\ ~~~aEZ2. - LI 

N a _ 1 (mod 4) 

where in the last step the Cauchy-Schwarz inequality was applied. Now, Lemma 8 
can be used in order to obtain 

4 (3) 6 12(21 + 8v'-) 96(13 + 1OV2-) 
m Dm/2;ac ? + 2 +3 

aE7Zm 
a_1 (mod 4) 

4 w-5 1 
+ E/ 2 

v1 
_ I:gm2 r 

=0 g=(91 ,92,93)EC3(2g03(2 
r(2'g, m/2) 

91g93=1 (mod 2) 
92-0 (mod 4) 

91-92 +93-0 (mod 8) 

4W-5 

+ S'1 _/ I:2 1 
m =O g=(g 92 ,93)EC3(2w-) r(2'g, m/2) 

91-93-1 (mod 2) 
92-2 (mod 4) 

91 -92+93-0 (mod 8) 

2 v2 w-5 

__ 
1/ : 

1 
M 

v=0 g=(91,92,93)EC3(2w-v-1) r(2>g, m/2) 
92-1 (mod 2) 

i-ao9+aq_-nO (mod 4) 
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6 12(21 + 8 /2) 96(13 + 1Ov/2) 
m m2 m 

4 ~W/2 1 

m1/2 r(2L.g m/2) 
=t0 g=(91,92,93)EC3(2w l) 

91=93=1 (mod 2) 
92-0 (mod 2) 

91 -92+93=0 (mod 8) 

+ 2 Z21'/2 S g 

Ml/ 
V= =(91 ,92,93)EC3 (2w-L'- 1 ) r(2v2g, m/2) 

92-1 (mod 2) 
91 -92+93g0 (mod 4) 

6 12(21 + 8v'-) 96(13 + 1Ov/2) 
m mm 

m1/2 
W 

2 
g,, 

- (w)r(2vg, m/2) 

g9 1 (mod 2) 
92-=0 (mod 2) 

93-=92-91 (mod 8) 

+ A4 : 2/2 S 1 Ml/ 
V= =(91,92,93)EC3(2w-v-l 

r(2v'g, m/2) 

g10 (mod2) 
92 1 (mod 2) 

93=92-91 (mod 4) 

6 + 12(21 + 8v?) + 96(13 + 1Ov) 
-m + 

+ 4 2-3J/2 1 
m1/2 E^-o s~e~l(2w->-l~u r(2vg2,m/2) 

92-=0 (mod 2) 

g1EC) g3EC1(2 1 --) r(g3, 2W V) 
91-1 (mod 2) 93=92-91 (mod 8) 

+ 4 5 2-3iv/2 I1 

m/2 V 91 EC1 (2w-vl)U{0} r(2ggl, m/2) 
gl=0 (mod2) 

11 

g2ECl (- g) 
r(92, 

23ECl(2- L) r(g3,2 ) 

92-1 (mod 2) 93=92-91 (mod 4) 
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Hence, it follows from Lemma 3 that 

4 D D(3) < 6 + 12(21 + 8v'X) +96(13 + 1OV-) 
S m/2;a,c - m m2 m3 

aE7Zm 
a= _1 (mod 4) 

4w-S 

+_ E2-3V12 E 
m >o 92EC1 (2w l)U{O} r(21g2,m/2) 

92=0 (mod 2) 

* (-log2w-1 + A) (I log 2w-- +? 

+ E2-3v12 
1 

+ m1/2 00 91EC1(2wL-_1 )u{o} 
r(2-gi, m/2) 

g9-0 (mod 2) 

* (-log2wvl + A) ( log2w-v1 + 

6 12(21 + 8v'2) 96(13 + 1Ov'-) 
M M~2 + 3 m m m 

+ 1 3/2 
(v=-M- 

E 
2 r(h, 2wv-v-2)) 

+1/X2 Z -V2 (1 + 21 hEC,2_2 r(h, 2VV2 

*(log 

2wv>1 

+ 

A 
) ( 

1 
log 

2w-v1 

+2) 

+ml/2 0 ~~~~hEC1 (2w- -) 

(1 lW-v-1 
4 1 

< -+ 2 + 
m m m 

+ 1/2E 2-3u/2 (1 + 2-v ( log 2v2 + ) 

4 WE2-3 4 1 (-lg2 2 
* (-log 2wv1 + -) ( - log 2w1 + 2} 

7r ~~15 4w 1 

4W-5 /1 

+m/ 5 23v12 1 + 2-v- log 2w-02 + 
v0 

(2Llog 2wL1+ ?- ( 1o "-- 

-4 2 3v1215,/2- -log2 w-vl + A) 
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6 12(21 + 8v) + 96(13 + 10v/2) 
m + 

+ E5 2-> ( + 3- o a-- 1 (-51 

<6 +12(21 + 8X) +96(13 +10V/2) 
m + 

+ ml2 2 -312/ (1 + 2-v' - log 2w--2 + 1)) + 12 E r 

(1 2w1+ 4) (1+2 2lo 2 _1+2(5 +44/2)) 

mm1/2 (E (23/2) + K2-5)2) (!iogm+ l- log4)) 

log 4w log 21+ 2(+4 

(iiogm+ 15 - 7r o) (7r v(logmlog2) + 154 ) 

6 12(21(4-8vV-) 96(13+ v/-2)(i~lg> 

m +? m1/2 ( 7 + 2- - logm + - 

* (15m 7r - ) (1 + (logm-log2) + 2(5 +4/)) 

m 6 +4( 31 1/2 + 4 +5 2r 14 /) 

(7rg ? 105 7r 

6 - ( 12 1V 2) (1g 1 log m 

<rn+ 31m2 E 32+E25r-oM 

which is the desired result. C 

Theorem 2. Let the parameter c _2 (mod 4) be fixed. Let 0 < ce K 1. Then there 

exist more than (1 - cm/4 values of a c 7/m with a--1 (mod 4) such that the 

discrepancy D$3)2;a C of triples in the inversive congruential method satisfies 

D(31 <-( 4(2 +lo 2)m 1/2 (-logmn+ 17 + . 

Proof. Subsequently, the abbreviation 

M= 4(12? 1 logm+ 7 )o + 

1 4 lo31 ~ 1/212(1/-) lo 
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is used. Suppose that there exist at most (1 - o)m/4 values of a C Zm with 
a 1_ (mod4) and D (3) < ce-1M, i.e., there exist at least cam/4 values of 

m/2;a,c 

a C Em with a _ 1 (mod 4) and D(3)c > c-1M. Hence, one obtains m/2;a,c - 

D(3) Mm 
m/2;a,c - 4 

aEZm 
a--1 (mod 4) 

which contradicts Theorem 1. D 

Theorem 3. The discrepancy D(3)2;aC of triples in the inversive congruential 
method satisfies 

D (3)2; > 2 M -1/2 
m/2;a,c - w + 2 

for any parameters a 1_ (mod 4) and c 2 (mod 4). 

Proof. First, Lemma 2 is applied with k = 3, N = m/2, t, = xn for 0 < n < m/2, 
and h = (1,0, -1) C Z3. This yields 

1 (m/2)-1 

m/2;a ~ ~ eh .xc -S( 0-1; a; m), Dm/2;,c> (7r + 2)m e(h Xn)0 ( +2)m S(lO a1 

where in the second step Lemma 5 has been used. Hence, it follows from Lemma 7 
that 

D (3)2; c > 
1 

- 2(w+2)/2 2 -1/2 

m/2;a,c 
= 

w?)Ii+ 
which completes the proof. 

Theorem 1 shows that for any parameter c the discrepancy D(3)2;a on the 

average over the parameter a, has an order of magnitude at most m- 1/2 (log M)3. 

In particular, this upper bound for the average value is independent of the specific 
choice of the parameter c in the inversive congruential method, provided the condi- 
tion c 2 (mod 4) is met. Theorem 3 implies that the upper bound for the average 
value is best possible up to the logarithmic factor, since the discrepancy D(32;ac of 
any inversive congruential generator with a 1_ (mod 4) and c -2 (mod 4) has an 
order of magnitude at least m-1/2. Altogether, these results show that the average 
value of the discrepancy of triples is of an order of magnitude between m- 1/2 and 
m1/2((log M)3, which fits the law of the iterated logarithm for the discrepancy of 
true random points in [0,1)3 shown in [10]. Theorem 2 provides even more informa- 
tion, since it implies that for any parameter c only an arbitrarily small percentage 
of the parameters a may lead to a discrepancy of triples with an order of magni- 
tude greater than m-1/2(log M)3. In this connection, it should be mentioned that 
according to a recent result in [9] it can happen that for certain parameters a and c 
the discrepancy of triples is at least of the order of magnitude m-1/3, which is too 
large to fit the law of the iterated logarithm. Thus, the parameters in the inversive 
congruential method with power of two modulus have to be chosen with some care. 
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